





## George Cady's contribution to noble-metal chemistry

## Felix Aubke

Department of Chemistry, University of British Columbia, Vancouver, B.C., V6T 1Z1, Canada

Keywords: Noble-metal chemistry; Silver difluoride; Syntheses; ESR spectroscopy; Magnetic properties; Superacid systems

While George Cady's contributions to Main-Group chemistry, particularly fluorine chemistry, are widely known, his contribution to noble-metal chemistry has been highly significant. His publications in this area have opened up new opportunities and paved the way for new insights and developments.

The use of AgF<sub>2</sub> as a catalyst has led to many novel fluorine compounds, such as bis(fluorosulfuryl)peroxide, S<sub>2</sub>O<sub>6</sub>F<sub>2</sub> [1]. An attempt by us to elucidate the role of AgF<sub>2</sub> in this reaction resulted in the synthesis and characterization first of silver(II) fluorosulfate [2] and then of Pd(SO<sub>3</sub>F)<sub>2</sub> and the mixed valency compound Pd<sup>II</sup>[Pd(SO<sub>3</sub>F)<sub>6</sub>] [3,4] with paramagnetic, octahedrally coordinated Pd<sup>II</sup>. Below 40 K [5], both palladium fluorosulfates and Ag(SO<sub>3</sub>F)<sub>2</sub> become ferromagnetic.

The syntheses of  $Au(SO_3F)_3$  and  $Pt(SO_3F)_4$  [6] by metal oxidation with bromine(1) fluorosulfate proceeded via the intermediates  $Au(SO_3F)_3 \cdot 2BrSO_3F$  and  $Pt(SO_3F)_4 \cdot 4BrSO_3F$ . The binary fluorosulfates formed on pyrolysis of these solvates were weakly paramagnetic, while  $Au(SO_3F)_3$  and  $Pt(SO_3F)_4$  obtained via metal oxidation by  $S_2O_6F_2$  were diamagnetic. The bromine fluorosulfate solvates were found to contain the anions  $[Au(SO_3F)_4]^-$  and  $[Pt(SO_3F)_6]^{2-}$  and the polybromine cations  $Br_3^+$  and  $Br_5^+$ . This, in turn, led to the development of the noble-metal superacid systems  $HSO_3F-Au(SO_3F)_3$  [7,8] and  $HSO_3F-Pt(SO_3F)_4$  [9].

The observation of paramagnetism in  $Au(SO_3F)_3$  has resulted in the generation and identification (by electron spin resonance spectroscopy) of true  $Au^{2+}$  cations, both in the radical anion  $[Au(SO_3F)_4]^{2-}$  [10] and as lattice defect in oligomeric  $[Au(SO_3F)_{3-x}]_n$  [11]. The detection of  $Au^{2+}$  was aided by the molecular structure determination of  $[Au(SO_3F)_3]_2$  [12].

An attempt to utilize the protonating ability of the noble-metal superacids towards CO resulted in the discovery of thermally stable noble-metal carbonyl cations: linear  $[Au(CO)_2]^+$  [13,14], square-planar  $[M(CO)_4]^{2+}$  [15,16] (M=Pd or Pt) and cyclic  $[Pd_2(\mu-CO)_2]^{2+}$  [17] with  $Sb_2F_{11}^-$  as anions and the fluorosulfates  $Au(CO)(CO_3F)$  [18] and  $cis-M(CO)_2(SO_3F)_2$ 

(i) Reduction

$$M(SO_3F)_n + CO(g) \xrightarrow{HSO_3F} M(SO_3F)_{n-2} + CO_2 + S_2O_5F_2$$

(ii) Ionic dissociation

$$M(SO_3F)_{n-2} \xrightarrow{HSO_3F} M_{(solv.)}^{(n-2)+} + (n-2)SO_3F^{-}$$

(iii) Complexation by CO

$$M_{(\text{solv.})}^{(n-2)+} + m\text{CO} \xrightarrow{\text{HSO}_3F} [M(\text{CO})_m]_{(\text{solv.})}^{(n-2)+}$$

(iv) Ligand exchange (CO versus  $SO_3F^-$ )

$$[M(CO)_{m}]_{(solv.)}^{(n-2)+} + (n-2)SO_{3}F^{-} \xrightarrow{HSO_{3}F}$$

$$M(CO)_{m-(n-2)}(SO_{3}F)_{(n-2)} + (n-2)CO$$

- (v) Solvolysis in liquid SbF<sub>5</sub>
- (a)  $Au(CO)SO_3F + CO + 4SbF_5 \xrightarrow{60-80 \text{ °C}}$

$$[Au(CO)_2][Sb_2F_{11}] + Sb_2F_9SO_3F$$

(b)  $M(CO)_2(SO_3F)_2 + 2CO + 8SbF_5 \longrightarrow$ 

$$[M(CO)_4][Sb_2F_{11}]_2 + 2Sb_2F_9SO_3F$$

$$(M = Pd \text{ or } Pt)$$

Scheme 1. The formation of metal carbonyl cations in HSO<sub>3</sub>F — an attempt at a rationalization.

[19] (M = Pd or Pt), all examples of unusual metal-to-CO bonding, where  $\pi$ -back-donation is insignificant and the effective atomic number rule is not obeyed. A rationale for the formation of the 'non-classical metal carbonyl' derivatives is offered in Scheme 1.

## Acknowledgements

Professor H. Willner (Hanover, Germany), his students, and my students, contributed immensely to this study, which was supported by NSERC, DFG and NATO.

## References

- [1] F.B. Dudley and G.H. Cady, J. Am. Chem. Soc., 79 (1957) 513.
- [2] P.C. Leung and F. Aubke, Inorg. Chem., 17 (1978) 1765.
- [3] K.C. Lee and F. Aubke, Can. J. Chem., 55 (1977) 2473.
- [4] K.C. Lee and F. Aubke, Can. J. Chem., 57 (1979) 2058.
- [5] M.S.R. Cader, R.C. Thompson and F. Aubke, Chem. Phys. Lett., 164 (1989) 438.
- [6] W.M. Johnson, R. Dev and G.H. Cady, *Inorg. Chem.*, 11 (1972) 2260.
- [7] K.C. Lee and F. Aubke, Inorg. Chem., 18 (1979) 389.
- [8] K.C. Lee and F. Aubke, Inorg. Chem., 19 (1984) 119.
- [9] K.C. Lee and F. Aubke, Inorg. Chem., 23 (1984) 2124.
- [10] H. Willner, F. Mistry, G. Hwang, F.G. Herring, M.S.R. Cader and F. Aubke, J. Fluorine Chem., 52 (1991) 13.

- [11] F.G. Herring, G. Hwang, K.C. Lee, F. Mistry, P.S. Phillips, H. Willner and F. Aubke, J. Am. Chem. Soc., 114 (1992) 1271.
- [12] H. Willner, S. Rettig, J. Trotter and F. Aubke, Can. J. Chem., 69 (1991) 391.
- [13] H. Willner and F. Aubke, Inorg. Chem., 29 (1990) 2195.
- [14] H. Willner, J. Schaebs, G. Hwang, F. Mistry, R. Jones, J. Trotter and F. Aubke, J. Am. Chem. Soc., 114 (1992) 8972.
- [15] G. Hwang, C. Wang, F. Aubke, M. Bodenbinder and H. Willner, Can. J. Chem., 71 (1993) 1532.
- [16] G. Hwang, M. Bodenbinder, H. Willner and F. Aubke, *Inorg. Chem.*, 32 (1993) 4667.
- [17] C. Wang, M. Bodenbinder, H. Willner, S. Rettig, J. Trotter and F. Aubke, *Inorg. Chem.*, 33 (1994) 779.
- [18] C. Wang, M. Bodenbinder, H. Willner and F. Aubke, J. Fluorine Chem., 66 (1994) 167.